THE EFFECT OF HIBISCUS SABDARIFFA LINN.ETHANOLIC EXTRACT ADMINISTRATION ON RAGE, GLP-1 AND GLP-1R EXPRESSION IN HEART TISSUE OF DIABETIC MICE

Authors

  • Lestari YD Master Program in Biomedical Sciences, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia Author
  • Santoso DIS Departement of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia Author
  • Goenarjo RA Departement of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia Author
  • Paramita N Departement of Medical Physiology, Faculty of Medicine, Universitas Indonesia, Jakarta, Indonesia Author

DOI:

https://doi.org/10.61841/4r6k0m77

Keywords:

Hibiscus Sabdariffa Linn, Diabetes Melitus, Heart, RAGE, GLP-1R, GLP-1

Abstract

Diabetes mellitus (DM) is a multifactorial disease associated with hyperglycemia and an increased risk of complications in the cardiovascular system. During hyperglycemia, there is a significant decrease in GLP-1 and GLP1R expression, which have been known to have protective effects on the cardiovascular system. Increased RAGE expression due to hyperglycemia can also lead to inflammation, contributing to the pathogenesis of diabetes complications, specifically cardiovascular diseases. Administration of Hibiscus sabdariffa Linn. (HSL) can improve cardiovascular function, partly by increasing GLP-1 expression and suppressing RAGE expression. The aim of this study is to investigate the effect of HSL administration on RAGE, GLP-1, and GLP-1R expression in the heart. This study is an experimental study using 9-to-11-week-old DDY mice divided into four groups: control (K), DM control (KDM), positive control DM with quercetin (KQ), and DM with HSL at a dose of 400 mg/kgBW (DM-HSL). The experimental animals received treatment for four weeks.The analysis of GLP-1R and RAGE expression was conducted using RT-PCR, while GLP-1 expression were obtained using the ELISA method. The results of this study indicate a decrease in RAGE expression and an increase in GLP-1 and GLP-1R expression in the hearts of diabetic mice. Quercetin administration was also found to decrease RAGE expression, increase GLP-1 expression, and raise GLP- 1R expression in the hearts of diabetic mice. These findings suggest that HSL administration has the potential to protect the cardiovascular system in diabetes, which is related to the activity of GLP-1 and GLP-1R and RAGE.

References

Khullar M, Al-Shudiefat AARS, Ludke A, Binepal G, Singal PK. Oxidative stress: A key contributor to diabetic cardiomyopathy. Can J Physiol Pharmacol. 2010;88(3):233–40.

Adeghate E, Singh J. Structural changes in the myocardium during diabetes-induced cardiomyopathy. Heart Fail Rev. 2014;19(1):15–23.

Dasar LNRK. Laporan_Nasional_RKD2018_FINAL.pdf [Internet]. Badan Penelitian dan Pengembangan

Kesehatan. 2018. p. 198. Available from:

http://labdata.litbang.kemkes.go.id/images/download/laporan/RKD/2018/Laporan_Nasional_RKD2018_FIN AL.pdf

Ma H, Li SY, Xu P, Babcock SA, Dolence EK, Brownlee M, et al. Advanced glycation endproduct (AGE) accumulation and AGE receptor (RAGE) up-regulation contribute to the onset of diabetic cardiomyopathy. J Cell Mol Med. 2009;13(8 B):1751–64.

Usman Y, Iriawan RW, Rosita T, Lusiana M, Kosen S, Kelly M, et al. Indonesia’s sample registration system in 2018: A work in progress. J Popul Soc Stud. 2018;27(1):39–52.

Haidara M, Yassin H, Rateb M, Ammar H, Zorkani M. Role of Oxidative Stress in Development of Cardiovascular Complications in Diabetes Mellitus. Curr Vasc Pharmacol. 2006;4(3):215–27.

Zhao J. Molecular mechanisms of AGE/RAGE-mediated fibrosis in the diabetic heart. World J Diabetes. 2014;5(6):860.

Faria A, Persaud SJ. Cardiac oxidative stress in diabetes: Mechanisms and therapeutic potential. Pharmacol Ther [Internet]. 2017;172:50–62. Available from: http://dx.doi.org/10.1016/j.pharmthera.2016.11.013

Lee TW, Kao YH, Lee TI, Chang CJ, Lien GS, Chen YJ. Calcitriol modulates receptor for advanced glycation end products (RAGE) in diabetic hearts. Int J Cardiol [Internet]. 2014;173(2):236–41. Available from: http://dx.doi.org/10.1016/j.ijcard.2014.02.041

Del Olmo-Garcia MI, Merino-Torres JF. GLP-1 receptor agonists and cardiovascular disease in patients with type 2 diabetes. J Diabetes Res. 2018;2018.

Tang S tao, Zhang Q, Tang H qin, Wang C jiang, Su H, Zhou Q, et al. Effects of glucagon-like peptide-1 on advanced glycation endproduct-induced aortic endothelial dysfunction in streptozotocin-induced diabetic rats: possible roles of Rho kinase- and AMP kinase-mediated nuclear factor κB signaling pathways. Endocrine. 2016;53(1):107–16.

Li J, Zheng J, Wang S, Lau HK, Fathi A, Wang Q. Cardiovascular benefits of native GLP-1 and its metabolites: An indicator for GLP-1-therapy strategies. Front Physiol. 2017;8(JAN):1–13.

Nauck MA, Vardarli I, Deacon CF, Holst JJ, Meier JJ. Secretion of glucagon-like peptide-1 (GLP-1) in type 2 diabetes: What is up, what is down? Diabetologia. 2011;54(1):10–8.

Baggio LL, Yusta B, Mulvihill EE, Cao X, Streutker CJ, Butany J, et al. GLP-1 Receptor Expression Within the Human Heart. Endocrinology. 2018;159(4):1570–84.

Drucker DJ. The Cardiovascular Biology of Glucagon-like Peptide-1. Cell Metab [Internet]. 2016;24(1):15–

30. Available from: http://dx.doi.org/10.1016/j.cmet.2016.06.009

Ishibashi Y, Nishino Y, Matsui T, Takeuchi M, Yamagishi SI. Glucagon-like peptide-1 suppresses advanced glycation end product-induced monocyte chemoattractant protein-1 expression in mesangial cells by reducing advanced glycation end product receptor level. Metabolism [Internet]. 2011;60(9):1271–7. Available from: Halbirk M, Nørrelund H, Møller N, Holst JJ, Schmitz O, Nielsen R, et al. Cardiovascular and metabolic effects of 48-h glucagon-like peptide-1 infusion in compensated chronic patients with heart failure. Am J Physiol Hear Circ Physiol. 2010;298(3):1096–103.

Poornima I, Brown SB, Bhashyam S, Parikh P, Bolukoglu H, Shannon RP. Chronic glucagon-like peptide-1 infusion sustains left ventricular systolic function and prolongs survival in the spontaneously hypertensive, heart failure-prone rat. Circ Heart Fail. 2008;1(3):153–60.

Adeyemi DO, Adewole OS. Hibiscus sabdariffa renews pancreatic β-cells in experimental type 1 diabetic model rats. Morphologie [Internet]. 2019;103(341):80–93. Available from: https://doi.org/10.1016/j.morpho.2019.04.003

Kartinah NT, Fadilah F, Ibrahim EI, Suryati Y. The Potential of Hibiscus sabdariffa Linn in Inducing Glucagon-Like Peptide-1 via SGLT-1 and GLPR in DM Rats. Biomed Res Int. 2019;2019.

Lin HH, Chan KC, Sheu JY, Hsuan SW, Wang CJ, Chen JH. Hibiscus sabdariffa leaf induces apoptosis of human prostate cancer cells in vitro and in vivo. Food Chem [Internet]. 2012;132(2):880–91. Available from: http://dx.doi.org/10.1016/j.foodchem.2011.11.057

Andraini T, Yolanda S. Prevention of insulin resistance with Hibiscus sabdariffa Linn. extract in high-fructose fed rat. Med J Indones. 2014;23(4):192–6.

Smelcerovic A, Lazarevic J, Tomovic K, Anastasijevic M, Jukic M, Kocic G, et al. An Overview, Advantages and Therapeutic Potential of Nonpeptide Positive Allosteric Modulators of Glucagon-Like Peptide-1 Receptor. ChemMedChem. 2019;14(5):514–21.

Fan J, Johnson MH, Lila MA, Yousef G, De Mejia EG. Berry and citrus phenolic compounds inhibit dipeptidyl peptidase IV: Implications in diabetes management. Evidence-based Complement Altern Med. 2013;2013.

Shi GJ, Li Y, Cao QH, Wu HX, Tang XY, Gao XH, et al. In vitro and in vivo evidence that quercetin protects against diabetes and its complications: A systematic review of the literature. Biomed Pharmacother [Internet]. 2019;109(July 2018):1085–99. Available from: https://doi.org/10.1016/j.biopha.2018.10.130

Chandna AR, Nair M, Chang C, Pennington PR, Yamamoto Y, Mousseau DD, et al. RAGE mediates the inactivation of nAChRs in sympathetic neurons under high glucose conditions. Eur J Neurosci. 2015;41(3):341–51.

Aligita W, Muhsinin S, Wijaya KT, Artarini A, Adnyana IK. Effect of okra (Abelmoschus esculentus L.) fruit extract in improving insulin sensitivity by modifying glucose-regulating gene expression. Rasayan J Chem. 2020;13(1):739–46.

Hao R, Qi Y, Hou DN, Ji YY, Zheng CY, Li CY, et al. BDNF val66met polymorphism impairs hippocampal long-term depression by down-regulation of 5-HT3 receptors. Front Cell Neurosci. 2017;11(October):1–10.

Sparvero LJ, Asafu-Adjei D, Kang R, Tang D, Amin N, Im J, et al. RAGE (Receptor for advanced glycation endproducts), RAGE ligands, and their role in cancer and inflammation. J Transl Med. 2009;7:1–21.

Chawla D, Bansal S, Banerjee BD, Madhu SV, Kalra OP, Tripathi AK. Role of advanced glycation end product (AGE)-induced receptor (RAGE) expression in diabetic vascular complications. Microvasc Res [Internet]. 2014;95(1):1–6. Available from: http://dx.doi.org/10.1016/j.mvr.2014.06.010

Peng CH, Chyau CC, Chan KC, Chan TH, Wang CJ, Huang CN. Hibiscus sabdariffa polyphenolic extract inhibits hyperglycemia, hyperlipidemia, and glycation-oxidative stress while improving insulin resistance. J Agric Food Chem. 2011;59(18):9901–9.

Vauzour D, Rodriguez-Mateos A, Corona G, Oruna-Concha MJ, Spencer JPE. Polyphenols and human health: Prevention of disease and mechanisms of action. Nutrients. 2010;2(11):1106–31.

Bataif B, Soeharto K S, Widjajanto E, Puspita Ratna A, Amalia S. The Effects of Rosella Extract (Hibiscus sabdariffa) against the n-carboxymethyl-lysine, NF-κβ, TNF-α in the Rats Heating Food Diets. J Exp Life Sci. 2018;8(1):47–52.

Lu M, Xu L, Li B, Zhang W, Zhang C, Feng H, et al. Protective effects of grape seed proanthocyanidin extracts on cerebral cortex of streptozotocin-induced diabetic rats through modulating AGEs/RAGE/NF-κB pathway. J Nutr Sci Vitaminol (Tokyo). 2010;56(2):87–97.

Reynaert NL, Gopal P, Rutten EPA, Wouters EFM, Schalkwijk CG. Advanced glycation end products and their receptor in age-related, non-communicable chronic inflammatory diseases; Overview of clinical evidence and potential contributions to disease. Int J Biochem Cell Biol [Internet]. 2016;81:403–18. Available from:

http://dx.doi.org/10.1016/j.biocel.2016.06.016

Dhanya R. Quercetin for managing type 2 diabetes and its complications, an insight into multitarget therapy. Biomed Pharmacother [Internet]. 2022;146(December 2021):112560. Available https://doi.org/10.1016/j.biopha.2021.112560

Ostadmohammadi V, Milajerdi A, Ayati E, Kolahdooz F, Asemi Z. Effects of quercetin supplementation on glycemic control among patients with metabolic syndrome and related disorders: A systematic review and meta-analysis of randomized controlled trials. Phyther Res. 2019;33(5):1330–40.

Ma X, Hao C, Yu M, Zhang Z, Huang J, Yang W. Investigating the Molecular Mechanism of Quercetin Protecting against Podocyte Injury to Attenuate Diabetic Nephropathy through Network Pharmacology, MicroarrayData Analysis, and Molecular Docking. Evidence-based Complement Altern Med. 2022;2022.

Li X, Zheng T, Sang S, Lv L. Quercetin inhibits advanced glycation end product formation by trapping methylglyoxal and glyoxal. J Agric Food Chem. 2014;62(50):12152–8.

Puddu A, Sanguineti R, Montecucco F, Viviani GL. Glucagon-Like Peptide-1 Secreting Cell Function as well as Production of Inflammatory Reactive Oxygen Species Is Differently Regulated by Glycated Serum and High Levels of Glucose. 2014;2014.

Hong JH, Kim H, Lee K. Glucolipotoxicity and GLP-1 secretion. 2021;1–11.

Noyan-ashraf MH, Momen MA, Ban K, Sadi A muktafi, Riazi AM, Baggio LL, et al. GLP-1R Agonist Liraglutide Activates Cytoprotective Pathways and Improves Outcomes After Experimental Myocardial Infarction in Mice. 2009;58(April):975–83.

Shen M, Sun D, Li W, Liu B, Wang S, Zhang Z, et al. The Synergistic Effect of Valsartan and LAF237 [( S )

-1- [( 3-Hydroxy-1-Adamantyl ) Ammo ] acetyl-2- Cyanopyrrolidine ] on Vascular Oxidative Stress and Inflammation in Type 2 Diabetic Mice. 2012;2012(1).

Madsbad S, Holst JJ. Determinants of the Effectiveness of Glucagon-Like Peptide-1 in Type 2 Diabetes. 2001;86(8):3853–60.

Papachristoforou E, Lambadiari V, Maratou E. Review Article Association of Glycemic Indices ( Hyperglycemia , Glucose Variability , and Hypoglycemia ) with Oxidative Stress and Diabetic Complications. 2020;2020.

Lim GE, Huang GJ, Flora N, Leroith D, Rhodes CJ, Brubaker PL. from the Enteroendocrine L Cell. 2009;150(February):580–91.

Yu Y li, Lu S si, Yu S, Liu Y chun, Wang P, Xie L, et al. Huang-Lian-Jie-Du-Decoction modulates glucagonlike peptide-1 secretion in diabetic rats. 2009;124:444–9.

Jewell JL, Oh E, Thurmond DC. Exocytosis mechanisms underlying insulin release and glucose uptake : conserved roles for Munc18c and syntaxin 4. 2010;25.

Dom JA, Gonz GA, Rosa LA De. The Antidiabetic Mechanisms of Polyphenols Related. 1800;1:1–16.

Deacon CF. Physiology and Pharmacology of DPP-4 in Glucose Homeostasis and the Treatment of Type 2 Diabetes. 2019;10(February).

Zakaria FR, Prangdimurti E. The Effect Of Roselle Extract ( Hibiscus sabdariffa Linn . ) On Blood Glucose Level And Total Antioxidant Level On Diabetic Rat Induced By Streptozotocin. 2014;4(10):8–16.

Fujii Y, Osaki N, Hase T, Shimotoyodome A. Ingestion of coffee polyphenols increases postprandial release of the active glucagon-like peptide-1 (GLP-1(7-36)) amide in C57BL/6J mice. J Nutr Sci. 2015;4:1–9.

Ishibashi Y, Matsui T, Maeda S, Higashimoto Y, Yamagishi S ichi. Advanced glycation end products evoke endothelial cell damage by stimulating soluble dipeptidyl peptidase-4 production and its interaction with mannose 6-phosphate / insulin- like growth factor II receptor. Cardiovasc Diabetol [Internet]. 2013;12(1):1. Available from: Cardiovascular Diabetology

Schlatter P, Beglinger C, Drewe J, Gutmann H. Glucagon-like peptide 1 receptor expression in primary porcine proximal tubular cells. 2007;141:120–8.

Tahara N, Yamagishi S ichi, Takeuchi M, Tahara A, Kaifu K, Ueda S, et al. Serum levels of advanced glycation end products ( AGEs ) are independently correlated with circulating levels of dipeptidyl peptidase-4 (

DPP-4in humans. Clin Biochem [Internet]. 2013;46(4–5):300–3. Availablefrom: http://dx.doi.org/10.1016/j.clinbiochem.2012.11.023

Yamagishi S ichi, Fukami K, Ueda S, Okuda S. Molecular Mechanisms of Diabetic Nephropathy and Its Therapeutic Intervention. 2007;952–9.

Holst JJ. The physiology of glucagon-like peptide 1. Physiol Rev. 2007;87(4):1409–39.

Rajan S, Dickson LM, Mathew E, Orr CMO, Ellenbroek JH, Philipson LH, et al. Chronic hyperglycemia downregulates GLP-1 receptor signaling in pancreatic β-cells via protein kinase A. Mol Metab [Internet].

;4(4):265–76. Available from: http://dx.doi.org/10.1016/j.molmet.2015.01.010

Xu G, Kaneto H, Laybutt DR, Duvivier-kali VF, Trivedi N, Suzuma K, et al. Downregulation of GLP-1 andfrom:http://dx.doi.org/10.1016/j.metabol.2011.01.010 GIP Receptor Expression by Hyperglycemia. 2007;56(June):1551–8.

Yang L, Yao D, Yang H, Wei Y, Peng Y, Ding Y, et al. Puerarin Protects Pancreatic ◻ -Cells in Obese Diabetic Mice via Activation of GLP-1R Signaling. 2016;30(March):361–71.

Furman B, Pyne N, Flatt P, O’Harte F. Targeting β-cell cyclic 3′5′adenosine monophosphate for the development of novel drugs for treating type 2 diabetes mellitus. A review. J Pharm Pharmacol. 2010;56(12):1477–92.

Fritsche A, Stefan N, Hardt E, Häring H, Stumvoll M. Characterisation of beta-cell dysfunction of impaired glucose tolerance : Evidence for impairment of incretin-induced insulin secretion. 2000;852–8.

Gin I, Gil-cardoso K, Addario CD, Falconi A, Bellia F, Blay MT, et al. Long-Lasting E ff ects of GSPE on Ileal GLP-1R Gene Expression Are Associated with a Hypomethylation of the GLP-1R Promoter in Female Wistar Rats. 2019;1–12.

Yang L, Yao D, Yang H, Wei Y, Peng Y, Ding Y, et al. Puerarin protects pancreatic β-cells in obese diabetic mice via activation of GLP-1R signaling. Mol Endocrinol. 2016;30(3):361–71.

Wootten D, Simms J, Koole C, Woodman OL, Summers RJ, Christopoulos A, et al. Modulation of the Glucagon-Like Peptide-1 Receptor Signaling by Naturally Occurring and Synthetic Flavonoids. 2011;336(2):540–50.

Baggio LL, Drucker DJ. Biology of Incretins : GLP-1 and GIP. 2007;2131–57.

Koole C, Wootten D, Simms J, Valant C, Sridhar R, Woodman OL, et al. Allosteric Ligands of the GlucagonLike Peptide 1 Receptor ( GLP-1R ) Differentially Modulate Endogenous and Exogenous Peptide Responses in a Pathway-Selective Manner : Implications for Drug Screening □. 2010;456–65.

Kim J hye, Kang M jung, Choi H neul, Jeong S mi, Lee Y min, Kim J in. Quercetin attenuates fasting and postprandial hyperglycemia in animal models of diabetes mellitus. 2011;5(2):107–11.

Downloads

Published

2024-06-03

How to Cite

YD, L., DIS, S., RA, G., & N, P. (2024). THE EFFECT OF HIBISCUS SABDARIFFA LINN.ETHANOLIC EXTRACT ADMINISTRATION ON RAGE, GLP-1 AND GLP-1R EXPRESSION IN HEART TISSUE OF DIABETIC MICE . Journal of Advanced Research in Medical and Health Science (ISSN 2208-2425), 10(6), 1-12. https://doi.org/10.61841/4r6k0m77

Similar Articles

61-70 of 110

You may also start an advanced similarity search for this article.